Switching and Forwarding

Scalable Networks

Switch: Forwards packets from input port to output port; port
selected based on destination address in packet header.

T3 —=t

T3—=

STS-1 ——=

Switch

——— T3

——— T3

——= STS-1

Input
Ports

Output
Ports

m Can build networks that cover large geographic area

m Can build networks that support large numbers of hosts

m Can add new hosts without affecting performance of existing

hosts

Spring 1996

Switching and Forwarding-75

Source Routing

Address contains sequence of ports on path from source to
destination.

0 Switch1l

3
[T3] o[1] [23] of

Host A

K 0 Switch 3

2 Host B

Spring 1996 Switching and Forwarding-76

Virtual Circuit Switching

m Eixplicit connection setup (and tear-down) phase
m Subsequent packets follow same circuit

® Analogy: phone call

m Sometimes called connection-oriented model

m Fach switch maintains a VC table.

0 Switch1
3 1
— 5 Switch 2 I
2
3 1
s]
11
w 0
Host A

\ 0 Switch 3

Spring 1996 Switching and Forwarding-77

Spring 1996

Datagrams

® No connection setup phase

m Fach packet forwarded independently

m Analogy: postal system

m Sometimes called connectionless model

m Fach switch maintains a forwarding (routing) table

Host D

. Host E
0 Switch1

Host F

Switch 2

Host C 2

Host A

o Switch3

Host G Host B

Host H

Switching and Forwarding-78

Virtual Circuit versus Datagram

Virtual Circuit Model:

m Typically wait full RTT for connection setup before sending
first data packet.

m While the connection request contains the full address for
destination, each data packet contains only a small identifier,
making the per-packet header overhead small.

m [f a switch or a link in a connection fails, the connection is
broken and a new one needs to be established.

m Connection setup provides an opportunity to reserve resources.

Datagram Model:

® There is no round trip time delay waiting for connection
setup; a host can send data as soon as it is ready.

m Source host has no way of knowing if the network is capable of
delivering a packet or if the destination host is even up.

m Since packets are treated independently, it is possible to route
around link and node failures.

m Since every packet must carry the full address of the
destination, the overhead per packet is higher than for the
connection-oriented model.

Spring 1996 Switching and Forwarding-79

Performance

Switches can be built from a general-purpose workstations;
will consider special-purpose hardware later.

1/0 Bus
CPU
Interface 1 >
———> |nterface? >
V) S B
. . Interface 3 j
Main Memory

m Aggregate bandwidth

— 1/2 of the I/O bus bandwidth
— capacity is shared among all hosts connected to switch
— example: 800Mbps bus can support 8 T3 ports

m Packets-per-second

— must be able to switch small packets
— 15,000 packets-per-second is an achievable number
— example: 64-byte packets implies 7.69Mbps

Spring 1996 Switching and Forwarding-80

Spring 1996

Routing

m Forwarding versus Routing

— forwarding: to select an output port based on destination

address and routing table

— routing: process by which routing table is built

m Network as a Graph

® Problem: Find the lowest cost path between any two nodes

m Factors:

— Static: topology

— Dynamic: load

Routing-81

Distance Vector

m Fach node maintains a set of triples:
(Destination, Cost, NextHop)

m Fach node sends updates to (and receives updates from) its
directly connected neightbors

— periodically (on the order of several seconds)
— whenever its table changes (called triggered update)

m Fach update is a list of pairs:
(Destination, Cost)
m Update local table if receive a “better” route

— smaller cost

— came from next-hop

m Refresh existing routes; delete if they time out

Spring 1996 Routing-82

void
mergeRoute (Route *new)

{

int 1i;

for (i = 0; i < numRoutes; ++1i)
{
if (new->Dest == rt[i] .Dest)
{
if (new->Cost + 1 < rt[i].Cost)
break;
else if (new->NextHop == rt[i].NextHop)
break;
else
return,;
+
rt[i] = *new;
rt[i] .TTL = MAX_TTL;
++rt[i] .Cost;
if (i == numRoutes)
++numRoutes;

Spring 1996 Routing-83

Example

Routing table at node B

Spring 1996

Destination | Cost | NextHop

Q™ mgaQ =
W DN DN DO
> > > 0 Q>

Routing-84

Routing Loops

m Fxample 1

— F detects that link to G has failed

— F sets distance to G to infinity and sends update to A

— A sets distance to G to infinity since it uses F to reach G
— A receives periodic update from C with 2-hop path to G
— A sets distance to G to 3 and sends update to F

— F decides it can reach G in 4 hops via A

® Example 2

— Link from A to E fails

— A advertises distance of infinity to E

— B and C advertise a distance of 2 to E

— B decides it can reach E in 3 hops; advertises this to A
— A decides it can reach E in 4 hops; advertises this to C
— C decides that it can reach E in 5 hops......

m Heuristics to break routing loops

— set infinity to 16
— split horizon

— split horizon with poison reverse

Spring 1996 Routing-85

Link State

Strategy: Send to all nodes (not just neighbors) information
about directly connected links (not entire routing table).

m Link State Packet (LSP)

— id of the node that created the LSP

— cost of link to each directly connected neighbor
— sequence number (SEQNO)

— time-to-live (TTL) for this packet

m Reliable Flooding

— store most recent LSP from each node

— forward LSP to all nodes but one that sent it

— generate new LSP periodically; increment SEQNO

— start SEQNO at 0 when reboot

— decrement TTL of each stored LSP; discard when TTL=0

Spring 1996 Routing-86

Route Calculation (in theory)

m Dijkstra’s shortest path algorithm

m NV denotes set of nodes in the graph

m [(7, 7) denotes non-negative cost (weight) for edge (4, 7)
m s € N denotes this node

m M denotes the set of nodes incorporated so far

m C(n) denotes cost of the path from s to node n

M = {s}
for eachn in N — {s}
C(n) =1(s,n)

while (N # M)
M = M union {w} such that C(w)
is the minimum for all w in (N — M)
for each n in (N — M)
C(n) = MIN(C(n), C(w) + l(w,n))

Spring 1996 Routing-87

Route Calculation (in practice)

m Forward search algorithm

m Kach switch maintains two lists:
Tentative and Confirmed
m Flach list contains a set of triples:

(Destination, Cost, NextHop)

Spring 1996 Routing-88

1. Initialized Confirmed with entry for me; cost = 0.

2. For the node just added to Confirmed (call it Next) select its

Spring 1996

LSP.

. For each Neighbor of Next, calculate the Cost to reach this

Neighbor as the sum of the cost from me to Next and from
Next to Neighbor.

3.1. If Neighbor is currently in neither Confirmed or
Tentative, add (Neighbor, Cost, NextHop) to
Tentative, where NextHop is the direction to reach
Next.

3.2. If Neighbor is currently in Tentative and Cost is less
that current cost for Neighbor, then replace current
entry with (Neighbor, Cost, NextHop), where
NextHop is the direction to reach Next.

. If Tentative is empty, stop. Otherwise, pick entry from

Tentative with the lowest cost, move it to Confirmed, and
return to step 2.

Routing-89

Spring 1996

Step Confirmed Tentative
1.

2.

(D,O,—)

(D:OF)

<D707_)
(C,2,C)

(D,O,—)
(C,2,C)

(D,O,—)
(C,2,C)
(B,5,C)

(D,O,—)
(C,2,C)
(B,5,C)

(D,O,—)

(C,2,C)
(B,5,C)
(A,10,C)

(B,11,B)
(C,2,0)

(B,11,B)
(B,5,C)
(A,12,C)

(A,12,C)

(A,10,C)

Routing-90

Spring 1996

Metrics

m Original ARPANET metric

— measured number of packets enqueued on each link

— took neither latency or bandwidth into consideration
m New ARPANET metric

— stamp each incoming packet with its arrival time (AT)
— record departure time (DT)
— when link-level ACK arrives, compute

Delay = (DT - AT) + Transmit + Latency
— if timeout, reset DT to departure time for retransmission
— link cost = average delay over some time period

Routing-91

® Problems with “New” metric

— under low load, static factors dominated cost; worked OK
— under high load, congested links had very hight costs;
packets oscillated between congested and idle links

— range of costs too large; prefered path of 126 lightly loaded
56Kbps links to a 1-hop 9.6Kbps path

m Revised ARPANET metric

— replaced delay measurement with link utilization
— compressed dynamic range

* highly loaded link never has a cost more than 3 times
its idle cost

* most expensive link only 7 times the cost of the least
expensive

* high-speed satellite link more attractive than low-speed
terrestrial link

* cost is a function of link utilization only at moderate to

high loads.

Spring 1996 Routing-92

225

New Metric
(routing units)

140 9.6 Satellite

90 .
75 9.6 Terrestrial

30 56 Terrestrial

0 [[[|
0 25% 50% 75% 100%

Utilization

Spring 1996 Routing-93

